Distance Based Fast Hierarchical Clustering Method for Large Datasets

نویسندگان

  • Bidyut Kr. Patra
  • Neminath Hubballi
  • Santosh Biswas
  • Sukumar Nandi
چکیده

Average-link (AL) is a distance based hierarchical clustering method, which is not sensitive to the noisy patterns. However, like all hierarchical clustering methods AL also needs to scan the dataset many times. AL has time and space complexity of O(n), where n is the size of the dataset. These prohibit the use of AL for large datasets. In this paper, we have proposed a distance based hierarchical clustering method termed l-AL which speeds up the classical AL method in any metric (vector or non-vector) space. In this scheme, first leaders clustering method is applied to the dataset to derive a set of leaders and subsequently AL clustering is applied to the leaders. To speed-up the leaders clustering method, reduction in distance computations is also proposed in this paper. Experimental results confirm that the l-AL method is considerably faster than the classical AL method yet keeping clustering results at par with the classical AL method. Keyword: distance based clustering, leaders clustering, average-link, large datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

Scientific Report I – Scientific Activity during Your Fellowship Ii – Publication(s) during Your Fellowship

Cluster analysis in a large dataset is an interesting challenge in many fields of Science and Engineering. One important clustering approach is hierarchical clustering, which outputs hierarchical (nested) structures of a given dataset. The single-link is a distance-based hierarchical clustering method, which can find non-convex (arbitrary)-shaped clusters in a dataset. However, this method cann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010